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From 2004 - Present:

• USNA has begun studies specific to the Chesapeake Bay

• Current efforts span five departments:

• Physics, Math, Chemistry, Oceanography and Naval Architecture

• Efforts have begun to join CBOS

• Instrumentation has begun in the Severn River and College Creek

• Study of small estuaries -“feeder” systems - to the Bay started

• Three Trident scholars: Gillary and Brasher (2004), Boe (2006)

• Differing approaches taken: Normal Mode Analysis,

• Navier-Stokes integration, COMSOL model

• 100 modes calculated for Dirichlet and Neumann (2005)

• Feasibility study for Galerkin method to extract −→u (x, t)(2006)

• Initial Value Problem/ Dual Time Problem / Dual Position Problem

• ∼ 10 monitoring stations needed for −→u (x
i
, t)

• Concerns about proper mesh for Bay

• How to handle varying wave speed in the Bay?
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Fig. 1 The Black Sea compliments of NASA World Wind.

Fig. 2 Monterey Bay from NASA World Wind. The open boundary
with the Pacific clearly visible.

and 5 illustrate the varying levels of complexity that have
been solved using NMA.

The basic unit of calculation used throughout this pa-
per is the normal mode. Like the modes of a guitar string
or an organ pipe, systems obeying the Helmholtz equation
and Dirichlet or Neumann boundary conditions will res-
onate in states referred as ”normal modes”. For the Chesa-
peake Bay, the modes calculated are energy potentials whose
gradients and curls of gradients correspond to the vector
current fields found in fluid mechanics (−→u ).

Fig. 3 Chesapeake Bay from NASA World Wind. The Atlantic
ocean open at the southern end, allowing in salt water. The north
end dominated by fresh water.

Briefly, the formulation leading to the calculation of
fluid flow stems from the realization that the vector fields
can be derived from two scalar fields, which are the solu-
tions to the Helmhotz equation under Dirichlet and Neu-
mann boundary conditions [4].

−→u = ∇× [(n̂Ψ)+∇× (n̂Φ)]. (1)

Here Ψ is the stream potential where,

−→u D = (u,v)D =
(
−∂Ψ

∂y
,

∂Ψ
∂x

)
, (2)

and Φ is the velocity potential where,

−→u N = (u,v)N =
(

∂Φ
∂x

,
∂Φ
∂y

)
, (3)

with (u,v) representing the surface current velocities in
the x and y directions respectively. The total velocity field
is composed:



Monterey BayMonterey Bay
•• LipphardtLipphardt et al. at Univ. of et al. at Univ. of DelewareDeleware have have 

continued work on Monterey Bay, developing near continued work on Monterey Bay, developing near 
realreal--time time ““NowcastsNowcasts””..

•• http://http://newark.cms.udel.edu/~brucel/slmapsnewark.cms.udel.edu/~brucel/slmaps//
•• http://http://newark.cms.udel.edu/~brucel/realtimemapsnewark.cms.udel.edu/~brucel/realtimemaps



Image Processing of the ChesapeakeImage Processing of the Chesapeake



Approximated BoundariesApproximated Boundaries



Galerkin Method:

u(x, t) =
∞∑

n=0

[
a(t)nu(x)

D,n
+ b(t)nu(x)

N,n

]

a(t)m =
∮

u(x, t)
data

u(x)
D,m

dΩ

a(t)m =
∮ ∞∑

n=0

[
a(t)nu(x)

D,n
+ b(t)nu(x)

N,n

]
u(x)

D,m
dΩ

a(t)m =
∞∑

n=0

[
a(t)n

∮
u

D,n
u

D,m
dΩ + b(t)n

∮
u

N,n
u

D,m
dΩ

]

a(t)m =
∞∑

n=0
[a(t)nδnm + b(t)nø]

a(t)m = δnma(t)n .

a(t)n =
∮

u(x, t)
data

u(x)
D,n

dΩ
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Partial Galerkin Method:

ã(t)m =
∫

Ω̃
u(−→x , t)u(−→x )

D,n
dΩ

ã(t)m =
∫

Ω̃

∞∑

n=0

[
a(t)nu(−→x )

D,n
+ b(t)nu(−→x )

N,n

]
u(−→x )

D,n
dΩ

ã(t)m =
∞∑

n=0

[
a(t)n

∫

Ω̃
u

D,n
u

D,m
dΩ + b(t)n

∫

Ω̃
u

N,n
u

D,m
dΩ

]

ã(t)m =
∞∑

n=0

[
α

D,nm
a(t)n + β

D,nm
b(t)n

]

(1)

Note that the α
D,nm

and β
D,nm

exhibit wavelet-like responses in the spectral

domain.
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Dual Time Problem (Initial Value Problem)

F (x, t)0,n = f (x)ng(t)n

F (x, t)
data

=
∞∑

n=0

[
Ang(t)

D,n
+ Bng(t)

N,n

] [
Cnf (x)

D,n
+ Dnf (x)

N,n

]

F (x, t)
data

=
∞∑

n=0

[
ACngD,n

f
D,n

+ BCngN,n
f

D,n
+ ADngD,n

f
N,n

+ BDngN,n
f

N,n

]

α(t1)m =
∮

F (x, t1)data
f (x)

D,m
dΩ

α(t1)m =
∮ ∞∑

n=0

[
ACngD,n

f
D,n

+ BCngN,n
f

D,n
+ ADngD,n

f
N,n

+ BDngN,n
f

N,n

]
f (

α(t1)n = ACng(t1)D,n
+ BCng(t1)N,n

α(t1)m =
∮

F (x, t1)data
f (x)

D,m
dΩ

β(t1)m =
∮

F (x, t1)data
f (x)

N,m
dΩ

γ(t2)m =
∮

F (x, t2)data
f (x)

D,m
dΩ

∆(t2)m =
∮

F (x, t2)data
f (x)

N,m
dΩ

α(t1)n = ACng(t1)D,n
+ BCng(t1)N,n

β(t1)n = ADng(t1)D,n
+ BDng(t1)N,n

γ(t2)n = ACng(t2)D,n
+ BCng(t2)N,n

∆(t2)n = ADng(t2)D,n
+ BDng(t2)N,n

5






αn γn

βn ∆n


 =




ACn BCn

ADn BDn







g(t1)D,n
g(t2)D,n

g(t1)N,n
g(t2)N,n







ACn BCn

ADn BDn


 =




αn γn

βn ∆n







g(t1)D,n
g(t2)D,n

g(t1)N,n
g(t2)N,n




−1
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Figure 1: Guitar String
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t

1

t 2

F(x,t)

x
t

Figure 1: Dual Time Problem - similar to the Initial Value Problem

2

1
t

t

Figure 2: Having found the amplitudes, the solution is projected forward in time.

7



Dual Position Problem (conjugate to time problem)

F (x, t)0,n = f (x)ng(t)n

F (x, t)
data

=
∞∑

n=0

[
Ang(t)

D,n
+ Bng(t)

N,n

] [
Cnf (x)

D,n
+ Dnf (x)

N,n

]

F (x, t)
data

=
∞∑

n=0

[
ACngD,n

f
D,n

+ BCngN,n
f

D,n
+ ADngD,n

f
N,n

+ BDngN,n
f

N,n

]

α(x1)m =
∫

F (x1, t)data
g(t)

D,m
dt

α(x1)m =
∫ ∞∑

n=0

[
ACngD,n

f
D,n

+ BCngN,n
f

D,n
+ ADngD,n

f
N,n

+ BDngN,n
f

N,n

]
g(t

α(x1)n = ACnf (x1)D,n
+ ADnf (x1)N,n

α(x1)m =
∫

F (x1, t)data
g(t)

D,m
dt

β(x1)m =
∫

F (x1, t)data
g(t)

N,m
dt

γ(x2)m =
∫

F (x2, t)data
g(t)

D,m
dt

∆(x2)m =
∫

F (x2, t)data
g(t)

N,m
dt

α(x1)n = ACng(t1)D,n
+ ADng(t1)N,n

β(x1)n = BCng(t1)D,n
+ BDng(t1)N,n

γ(x2)n = ACng(t2)D,n
+ ADng(t2)N,n

∆(x2)n = BCng(t2)D,n
+ BDng(t2)N,n
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αn γn

βn ∆n


 =




ACn ADn

BCn BDn







f (x1)D,n
f (x2)D,n

f (x1)N,n
f (x2)N,n







ACn ADn

BCn BDn


 =




αn γn

βn ∆n







f (x1)D,n
f (x2)D,n

f (x1)N,n
f (x2)N,n




−1
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t

1
x

2
x

F(x,t)

x

Figure 3: Dual Position Problem - conjugate to the Dual Time Problem

t

1
x 2

x

F(x,t)

x

Figure 4: Having found the amplitudes, the solution is projected across the spatial domain.
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Multiple Position Problem

F (x, t)0,n = f(x)
n
g(t)

n

F (x, t)
data

=
∞∑

n=0

[
A

n
g(t)

D,n
+ B

n
g(t)

N,n
+ E

n
t + F

n

] [
C

n
f(x)

D,n
+ D

n
f(x)

N,n
+ G

n
x + H

n

]

F (x, t)
data

=
∞∑

n=0

[
AC

n
g

D,n
f

D,n
+ BC

n
g

N,n
f

D,n
+ AD

n
g

D,n
f

N,n
+ BD

n
g

N,n
f

N,n

]

F (x, t)
data

= ... 16 terms, needs 8 locations


 8x8


 = ...
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8x x
2

F(x,t)

x

t
x

3
x

4
x

5
x

6 x
7

x
1

Figure 5: Having found the amplitudes, the solution is projected across the spatial domain.
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fresh 
water 

all the rest 
dx= 

c(x)*dt 

~ pickone 
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dx=l 
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Chesapeake Bay 
Analysis
• QUODDY 

Computer 
Model
– Finite-Element 

Model
– Fully 3-

Dimensional
– 9700 nodes



QUODDY
• Boussinesq

Equations
– Temperature
– Salinity

• Sigma Coordinates
• No normal flow
• Winds, tides and river 

inflow included in 
model



Dirichlet Mode 1 (350X1185) 
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Dirichlet Mode 7 (350X1185) 
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Dirichlet Mode 12 (350X1185) Dirichlet Mode 35 (350X1185) 



Neumann Mode 15 (350X1185) Neumann Mode 34 (350X1185) 

100 100 0.025 

0.01 
200 200 0.02 

300 
0.005 

300 
0.015 

400 400 
0.01 

500 0 500 

0.005 
600 600 

-0.005 
700 700 

0 

800 800 -0.005 
-0.01 

900 900 -0.01 

1000 
-0.015 

1100 1100 

100 200 300 100 200 300 



Neumann Mode 1 (350X1185) 
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Neumann Mode 4 (350X1185) 
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Neumann Mode 91 (350X1185) 
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Methods of solution
• Zel’dovich (1985):  Velocity vectors fields can be 

extracted from two scalar potentials

• Lipphardt et al. (2000):  Addition of forcing terms 
allows for non-conservation of mass through a 
boundary – ie. Water from rivers or the ocean is 
accounted.

2  
n n

D D
nλ∇ Ψ = − Ψ

2
m m

N N
mμ∇ Φ = − Φ

| 0D
boundaryΨ =

2 ( , , 0 , ) ( )x y t S tΘ∇ Θ =

ˆ( ) | 0N
boundaryn ⋅∇Φ =

modˆ ˆ( ) | ( ) |boundary el boundarym m u⋅∇Θ = ⋅ v

( ) ( )ˆ ˆu n n= ∇× Ψ +∇× Φ⎡ ⎤⎣ ⎦
v



Putting It All Together
• is the stream potential (vorticity mode).
• is the velocity potential (divergent mode). 
• Situation analogous to (E,B) fields from E&M.
• The vector field representation can be separated 

into two eigenvalue equations.
• Source term solved via Poisson’s equation.
• The total vector field is written as a sum over all 

states for each representation.

Ψ

1 1

( , ) ( , ) ( , ) ( ( ), ( ))
N M

n n n D m m m N S
n m

u v a u v b u v u t v t
= =

= + +∑ ∑

Φ



Time Series Analysis
• Chesapeake flow can be written as a 

Normal Mode expansion => u(r,t)
•
•
• Use Galerkin method to extract a(t), b(t)
• Due to limitations in data collection:

– use QUODDY (model based on data)
– Partial domain Galerkin method

srcNnnDn

N

n
n trurutbrutatru ),()()()()(),( ,,

1

rrrrrrrr
++= ∑

=



Galerkin Method

)()()()(),( ,,
1

rtbrtatrf NnnDn

N

n
n

rrr
Φ+Ψ= ∑

=

fullmnnmn

N

n
nm drrtbrrtaa Ω

⎭
⎬
⎫

⎩
⎨
⎧

Ψ⋅Φ+Ψ⋅Ψ= ∫ ∑
=

)()()()()()(
1

rrrr

{ } { }0)()(
11
∑∑
==

+=
N

n
nnm

N

n
nm tbtaa δ

{ } { }fullmn

N

n
nfullmn

N

n
nm drrtbdrrtaa ΩΨ⋅Φ+ΩΨ⋅Ψ= ∫∑∫∑

==

)()()()()()(
11

rrrr

)(taa nm =



Partial Domain Galerkin Method
)()()()(),( ,,

1
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n
n

rrr
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=
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n
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1
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Fig. 6 Orthogonality between any two modes shows the degree
which information about the system overlaps. For a basis set, the
requirement is that all functions spanning the space have a zero in-
tegral when considering the product of any two modes over the do-
main. The Neumann modes for the Bay are decent as compared to
similar calculations on the unit square and circle.

Employing the same techniques for the Neumann modes,
agreement could not be reached within an acceptable range
(10-20%). While studying the unit square and circle in
order to establish baseline performance, the finite differ-
ence results typically varied more than FEMLAB, so most
likely the error is coming from the finite difference scheme
and not FEMLAB. Although not conclusive, the agree-
ment between the two methods indicates stability of the
solution set.

Although not shown in this report, the Dirichlet and
source terms were calculated for the Chesapeake Bay and
can be found in references [8] and [11]. Comparison with
the finite difference scheme will require further study to
validate either the FEMLAB result or the finite differences
result. Given that Neumann conditions are better suited for
finite element analysis leads one to trust the FEMLAB re-
sults, however, improvements to the finite differences are
still possible, which will help validate the FEMLAB so-
lution set. The solutions arising from the source term be-
haved as expected. For a detailed inquiry into the complete
eigenmode set calculated to date for the Chesapeake Bay,
consult reference [8]. These results can also be seen at the
website listed at USNA [9]. Future work on the velocity
vector field for the Chesapeake Bay will include full three
dimensional analysis using FEMLAB and Quoddy in con-
junction.

Concurrent with this study, the residence time of par-
ticulants was analyzed using the Navier-Stokes equations

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

8
x 10

−8

Eigenvalues of Chesapeake Bay Neumann Modes

Eigenmode Number

Fig. 7 The progression of eigenvalues for the Neumann modes of
the Chesapeake Bay. No fluctuation is observed as the mode number
reaches 100, indicating that the feature size of these modes is far
from the size of the mesh.

and integrating the velocity fields [10]. By comparing trends
in velocity fields from an eigenmode calculation to a Navier-
Stokes calculation, one can analyze those parts of the ve-
locity domain that give rise to certain behaviors. This com-
parison represents the initial steps needed to perform a
full Normal Mode Analysis. Plans have begun to further
instrument the Bay, leading to the question, how many
real-time measurements are required in order to predict
important behavior within the Chesapeake. Normal Mode
Analysis will be used to help answer this question.
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Fig. 18 The mesh from QUODDY [9]. The highest density mesh is
in the region of greatest change in the depth.

cussion of fractals! The boundary for the calculations for
this paper were taken from the QUODDY model that the
meshes will match. Clearly, the feature set of the boundary
has been reduced by averaging the locations of the edges,
effectively smoothing the Chesapeake. Even so, the min-
imal mesh for COMSOL is 3200 elements. By adding in
features from the QUODDY mesh, the coarsest mesh will
easily be over 5000 elements.

A quick review of oceanographic websites indicates
that there are 10 data monitoring stations taking current
data in the Chesapeake. This sparse amount of data sug-
gests a data coverage of approximately 0.2%. One pos-
sibility for increasing the data coverage is to have many
more data taking stations. This is costly and impractical
as the Chesapeake is a major waterway for commerce and
military use. An alternative approach is to take a truly poor
mesh of the Chesapeake Bay. By severely lowering the
mesh resolution, the data coverage will increase at the ex-
pense of numerical accuracy. By time averaging data, the

Fig. 19 The mesh from QUODDY’s boundary remeshed within
COMSOL. The highest density mesh is in the region of greatest
change in curvature near the boundary.

longer time taken can also overcome poor spatial cover-
age. Each of these effects suggest an uncertainty princi-
ple δ(numerics) δ(spatial)δ(temporal) = constant. The
standard checks for such an analysis will be limited to sim-
ple dimensional analysis or 1-D signal applications, as in
section 4.

COMSOL is taking projects such as the Chesapeake
Bay into new territory as the complexity rises. The bank
of tests from simple systems may not easily apply to the
richness of the systems capable of being calculated by
COMSOL, yet difficult to analyze when combined with
real-world data. This is an on-going project. Stay tuned.
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Conclusion
• Possibly found way to use ~10 monitoring stations to extract 

full Chesapeake Bay flow field.
• Time series has a good chance to work!
• Due to COMSOL and usage of fuller geometric solutions, 

challenge older precepts based on signal processing.
• If orthonormality is the strongest requirement, create post-

processing options to massage results obtained from 
solvers.  Given them tolerances to adjust results.

• Please allow for easier adjustment and creation of 
meshes!

• Visit us at:  http://web.usna.navy.mil/~rmm/
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